How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

Terry L. Forrette MHS, RRT FAARC
Adjunct Associate Professor - LSUHSC

Clinical Consultant – Medical Specialties Inc
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

1. Work of breathing & Patient- Ventilator Synchrony
2. Liberating the patient from the ventilator
3. Becoming part of the solution

It's almost time for lunch. Am I early, or is he late?
... and the lunch appointments turns into this!

- PaO$_2$/FIO$_2$ 185
- 22 PaCO$_2$ – PetCO$_2$
- Increased VE requirements
- Distant to absent breath sounds

Diagnosis: ARDS

The ARDS “Solution”

- Protective Lung Ventilation Strategies
 - Minimal tidal volumes using PC
- Open Lung Ventilation
 - Alveolar recruitment maneuver
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

The Mechanics
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

What type ...

and how much?
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

Imposed Work

Physiologic Work

Airways Resistance (non-elastic work)

Elastic Work (lung – cw compliance)
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

WOB is frequency related

![Graph showing work of breathing (WOB) in normal, restrictive disease, and COPD conditions]

Restrictive Disease
- Increased elastic resistance

COPD
- Increased air flow resistance

Work of breathing (arbitrary units)

Respiratory frequency (breaths per minute)

![Image of a muscular person lifting weights]
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

Diaphragmatic Function

Elastic Work
Costal fibers
Crural fibers
Non-Elastic Work

9
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

Where is your patient?

Assessment and Monitoring
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

Esophageal Pressure Monitoring
- TTdi – tension time index and indicator of fatigue
- Pdi – trans-diaphragmatic to measure work
- Independent measurements of lung and chest wall mechanics

Clinical Assessment

Strength
- NIF > -20 to 30
- VC - 70 - 80 mL/kg/IBW

Endurance
- RR 24 - 38 br/min
- VT 5 - 7 mL/kg IBW
- RSBI < 105 br/L
- VE 200 mL/kg IBW

Patient Comfort

“Rapid pulse, sweating, shallow breathing... According to the computer, you’ve got gallstones.”
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

Patient - Ventilator Synchrony

What the brain demands the ventilator delivers

Neuro-mechanical synchronization

Data from Jubran et al and Panthenarthy et al
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

Asynchrony

Data from Jayrnan et al and Parthasarathy et al
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

Using Graphics to Assess Asynchrony

- Delayed Trigger
- Cycle-off Asynchrony
- Flow Asynchrony

AC-VC

- P_{peak}: 22
- P_{mean}: 8.1
- PEEP: 5.8
- I:E: 1:6.1
- f_{TOT}: 22
- V_{IF}: 445
- V_{TOT}: 11.0

AC-VC

Circuit Type: HME
Humidification Type: HME

16:59 19 Dec 2013
How Hard Is Your Patient Working?

Terry L. Forrette, MHS, RRT, FAARC

This may happen

- Asynchrony
- Frequent setting changes
- Sedation
- Prolonged ventilation time
- Possible muscle atrophy and VAP
- Increased patient risk and length of stay

How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

Liberating the Patient

Pressure Support ...

How much is enough?
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

Try this!
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

Knowledge Based Ventilation

- Adaptive Support Ventilation (ASV)©
- SmartCare©
- Proportional Assist Ventilation (PAV+)©
- Neurally Adjusted Ventilatory Assist (NAVA)©

Closing The Loop

Patient brain – Practitioner brain

Information

Patient - Ventilator Synchrony

Response
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

Proportional Assist Ventilation (PAV+)©

One Simple Setting
Work of Breathing

<table>
<thead>
<tr>
<th>SPONT</th>
<th>VC Manual Insp only</th>
<th>P</th>
<th>V-TRIG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>% Supp</td>
<td>Vamins</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50%</td>
<td>3.0 l/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tins 0.0 s</td>
<td>RAMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eins 3 l/min</td>
<td>PEEP 3.0 cmH₂O</td>
</tr>
</tbody>
</table>
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

PAV+ 80% with Varying Demand

Support Pressure

Increase demand

Decrease demand

% Support = 80 (Patient does 20%)
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

Ventilator Work Decreased to 50%
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

WOB Bar

Pt=25% of work
Vent=75% of work
% Supp 75%

Suppose there is an improvement in airflow resistance.

Pt=40% of work, Vent=60% of work.
% Supp 70%
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

- Tube size: 6.0–10.0.
- No leaks
- Ideal body weight is > 25 kg

Okay but does PAV make a difference?
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC
Consider other possibilities

If you can’t think outside of the box ...

... you’re going to get trapped in it.
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

Keep it Simple!
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

tforr1@suhs.edu

W O B and PAV References

How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

The WOB is Primarily Rate Dependent

- Restrictive disease favors faster rates
- COPD patients have less WOB at lower rates

Using Graphics To Assess Lung Mechanics

- Decreased compliance, increased WOB
- Increased Raw WOB
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

Normal Compliance

\[C = \frac{\text{volume}}{\text{pressure}} \]

\[= \frac{600}{20} \]

\[= 30 \text{ mL/cmH}_2\text{O} \]

Decreased Compliance

\[C = \frac{\text{volume}}{\text{pressure}} \]

\[= \frac{600}{30} \]

\[= 20 \text{ mL/cmH}_2\text{O} \]
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

Airways Resistance

Pressure

Volume

Expiratory Resistance

Inspiratory Resistance

Increased Inspiratory Resistance

Pressure

Volume
In Summary

- If flow dys-synchrony present adjust flow rate in VC or switch patient to a PC breath or a dual mode such as PRVC or VC+

- Adjust trigger sensitivity to remedy cycle on dys-synchrony

- If cycle off dys-synchrony is evident the shorten Ti either by increasing flow rate in VC or decreasing Ti in PC, PRVC/VC+

... and if you don't, then ...
Timing Asynchrony: Cycle On

- Delayed Trigger
- Auto-Trigger
- Ineffective Trigger

<table>
<thead>
<tr>
<th>C</th>
<th>P_{PEAK}</th>
<th>P_{IMFAN}</th>
<th>PEEP</th>
<th>I:E</th>
<th>f_{TOT}</th>
<th>V_{IP}</th>
<th>V_{E TOT}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>33</td>
<td>14</td>
<td>5.1</td>
<td>1:4.4</td>
<td>15</td>
<td>552</td>
<td>7.92</td>
</tr>
</tbody>
</table>
How Hard Is Your Patient Working?
Terry L. Forrette, MHS, RRT, FAARC

Timing Asynchrony: Cycle Off

- Delayed Cycle
- Early Cycle