Mechanical Ventilation in the Pediatric Emergency Room & Intensive Care Unit

Shaji Pillai, MD
04/03/14
The University of Kansas Hospital

Disclosures

- I have no disclosures to report
Objectives

- History of mechanical ventilation in children
- A brief overview of types of ventilation available
- Indications and challenges of the non-invasive ventilation modes
- Indications and challenges of the advanced invasive ventilation modes

History of mechanical ventilation

- First written idea of assisted ventilation: Galen of Pergamon (~175 AD)
 - Use of bellows to inflate the lungs of deceased animals
 - Discovered the larynx produced your voice
- First idea of external negative pressure ventilation: John Mayow (1638)
- First negative pressure ventilator: John Dalziel (1832)
 - First “tank respirator”: Patient sitting in an air tight box with head sticking out with manual bellows
The first widely used negative pressure ventilator: The Drinker Respirator (aka Emerson Iron Lung)

- Designed by Philip Drinker and Louis Agassiz Shaw Jr. (1928)
- Powered by an electric motor and 2 air pumps from a vacuum cleaner
- First ever use: 8 yr old girl w/ Poliomyelitis at Boston Children’s Hospital 1928

Emerson Iron Lung

History of mechanical ventilation

- Boston Children’s Hospital 4 patient chamber ventilator

- Movement away from negative pressure devices (1960s)
 - Large, taking up much space, difficult to access patient
 - No PEEP
 - Significant leakage leading to patient cooling
 - “Tank shock” - blood pooling in abdomen and lower extremities

- Intermittent positive pressure breathing (IPPB) (1950s)
 - Brief boost of positive airway pressure in patients with chronic respiratory failure
 - or to deliver aerosolized bronchodilator to COPD patients
 - Studies failed to demonstrate benefit over aerosol treatment alone via nebulizer
History of mechanical ventilation

- Invasive Positive Pressure machines
 - First generation 1940s to 50s
 - Only volume controlled
 - No patient triggered ventilations
 - No PEEP
 - No monitors
 - Second generation
 - Simple monitors - TV and RR
 - Patient triggered ventilations
 - IMV, SIMV introduced (only volume control)
- Third generation
 - Ex Servo 300, Bear 1000
 - Addition of microprocessor
 - Markedly more responsive to patient demand
 - SIMV w/ Pressure control, APRV
 - More bells and whistles (literally)
- Fourth generation
 - Current generation

Types of mechanical ventilation

- Non-invasive mechanical ventilation
 - Negative Pressure Ventilation (NPV)
 - Noninvasive Positive Pressure Ventilation (NIPPV)
 - CPAP, BIPAP, HHNC
- Conventional Invasive mechanical ventilation
 - CMV, AC, VC, IMV, SIMV
- Advanced ventilation
 - HFOV
 - APRV
 - ECMO (V-V and V-A)
Challenges to ventilation in children

- Smaller airway
- Multiple sized tubes and blades based on weight/size
- Mask sizes available at hand that are too big or too small
- Appropriate tubing for pediatric patients
- Fear of the machine, the staff, or the surroundings
- Sensory issues
- Hunger
- Sedation, Sedation, Sedation!

Noninvasive ventilation

- Positive effects
 - Decreases work of breathing
 - Increases functional residual capacity
 - Stabilizes chest wall to reduce retractions
 - Recruits alveoli with PEEP
 - Increases tidal volume and minute ventilation
 - Maintains upper airway patency

- Benefits over endotracheal intubation
 - Decrease upper airway trauma
 - No vocal cord dysfunction
 - Less sedation needed
 - No need for paralytics
 - Less risk of aspiration
 - Patients can still communicate
 - If successful, fewer oxygen days leading to less oxygen toxic side effects (ROP)
Types of noninvasive ventilation techniques

- CPAP - Continuous positive pressure ventilation
 - Constant pressure during inspiration and expiration
 - 5-10 cm H₂O
 - Delivered by binasal prongs, oronasal masks, nose masks, or nasopharyngeal prongs
 - Nasal CPAP - used to great effect in the Neonatal ICU

- BiPAP - Bi-level positive airway pressure
 - Provides 2 levels of positive airway pressure during respiratory cycle
 - Higher pressure IPAP during inspiration (10-16 cm H₂O)
 - Lower pressure EPAP during expiration (5-10 cm H₂O)
 - Set rate or back-up rate
 - Can be patient triggered

- Humidified high-flow nasal cannula (HHFNC)
 - Delivers warm, humidified air
 - Up to 8 L/min in infants and 40 L/min for older children
 - Less nasal irritation
 - Comparable to nasal CPAP

- Nasal intermittent positive pressure ventilation (NIPPV)
 - Provides periodic increases in positive pressure above a baseline fixed pressure
 - Has 2 flow meters compared to nasal CPAP’s 1 in order to add additional flow
 - Additional flow delivered at set rate, not patient triggered
Contraindications to NIV

- Impaired mental status
- Poor cooperation
- Agitation
- Inability to protect the airway
- Recent upper GI surgery
- Hemodynamic instability/shock
- Inappropriate mask size/type available

Noninvasive ventilation

- How do you know if it’s working?
 - Assess within 1-2 hours
 - Note if patient is tolerating it to start
 - Decreased respiratory rate, retractions, or work of breathing
 - Airway occlusive events decreased
 - Improved lung volumes noted
 - O₂ saturation improved

- How do you know if it’s failed?
 - Persistent or progressive respiratory distress and/or tachypnea
 - Tired appearance/worsening mental status
 - Increased agitation/anxiety
 - Vomiting, excessive secretions
 - Hemodynamic instability
 - Persistent hypoxia
Noninvasive ventilation - when to use it?

- Chronic patients
 - Nocturnal hypoventilation
 - Chronic respiratory failure patients with restrictive chest wall deformities and neuromuscular disease
 - Can delay need for tracheostomy and be effective in acute exacerbations
 - Cystic fibrosis patients
 - Can bridge to lung transplants in end stage lung disease

- Acute patients
 - Pneumonia
 - May be! Little concrete evidence to support improved outcomes
 - Fortenberry et al described improvement of 25 out of 28 patients on BiPAP with concurrent pneumonia and neurologic disorders - avoided intubation
 - Asthma
 - Possibly? Specifically status asthmaticus
 - Teague et al showed 19 of 26 patients improved on BiPAP - decreased RR and work of breathing
 - Joshi et al showed improvement in RR, PCO₂, and oxygen requirement for 18 of 29 patients for primary parenchymal disease but no improvement in O₂ saturation
 - Bronchiolitis
 - Some evidence shows improvement in number of O₂ days and reduced number of ventilator associated infections (Oels, Estrada & Abramo, 2009)
 - Acute Chest
 - Some evidence to support initiation of BiPAP on patients with acute chest to significantly reduce HR, RR, and O₂ requirement (Oels, Estrada & Abramo, 2009)
Noninvasive ventilation - strategies for children

- Start easy, work your way up
- Appropriate mask size and fit
- Child life, music therapy
- Recruit the parents!
- Pharmacotherapy: sedation without airway compromise
 - Ketamine
 - Dexmedetomidine

Types of invasive mechanical ventilation

- Conventional Ventilation:
 - CMV, IMV, SIMV, AC, etc
- Advanced ventilation
 - APRV - Airway pressure release ventilation
 - HFOV - High frequency oscillator ventilation
 - ECMO - Extracorporeal membrane oxygenation
The problems with conventional ventilation

- Barotrauma - Alveolar and small airway damage due to high inspiratory pressures
- Volutrauma - alveolar over-distension as a result of excessive volume
- Atelectrauma - damage caused by sheering forces due to cyclic repetition of collapse and reopening of dependent alveoli
 - Can be secondary to both direct mechanical factors and to cell damage from inflammatory mediator based
 - Sometimes this zone where the alveoli do not collapse versus being over distended in the diseased lung is too small for conventional ventilation to maintain tidal volumes

High frequency ventilation

- High frequency jet ventilation (HFJV) introduced in 1967 by Sanders to facilitate gas exchange during bronchoscopies
- High frequency positive pressure ventilation (HFPPV) introduced in 1970s by Oberg and Sjostrand
- Both HFJV and HFPPV depended on passive recoil of chest to eliminate CO₂
- High frequency oscillator ventilation (HFOV) developed in late 1970s/early 1980s
 - Able to keep lung volumes stable and controllable compared to the previous iterations
 - Active exhalation
HFOV

- Pressure oscillates around a constant distending pressure
- Tidal volumes generated are small
 - 0.1-5 ml/kg
 - Smaller than dead-space volume
- Breathing frequency > 1 Hz or 60 breaths per minute (usually 3-15 Hz)
- Ventilation is a function of amplitude, inspiratory time, and frequency
 - As frequency decreases, the delivered tidal volume increases and ventilation increases
- Oxygenation is a function of FiO₂ and the mean airway pressure (Pmaw)
- Gas transport is achieved through combination of convection and diffusion flow
 - More convection towards the proximal alveoli
 - More diffusion near the distal alveoli

HFOV

- Amplitude is the delta pressure to which the oscillator goes above and below the mean airway pressure
 - Initially set to achieve adequate chest wall vibration (aka the 'wiggle')
 - Wiggle is different for different sized patients
 - Neonates: up to chest wall
 - Pediatrics: shoulders to belly button
 - Adults: shoulders to mid thigh
HFOV

- When to use it?
 - Mostly used in neonates, although has been used in older pediatrics since mid 90s
 - Now used in some ARDS cases in adults as well.
 - Still seen as a rescue therapy in children with diffuse alveolar disease (DAD) such as ARDS, pneumonia, lung contusions
 - Seen with increased airway resistance and hyperinflation
 - Criteria to start includes:
 - Ventilatory failure with plateau pressure > 30 cm H2O despite use of permissive hypercapnia for at least 2 hours in conventional ventilation
 - Or an oxygenation index > 13 demonstrated by 2 blood gas measurements over a 6 hour period (or FiO2 > 0.6, PEEP > 10) in conventional ventilation
 - Earlier initiation associated with better outcomes

HFOV

- Things to watch for:
 - Watch for de-recruitment:
 - Every time patient is disconnected from circuit, de-recruitment occurs!
 - Use inline suction as opposed to open suction
 - Hyperinflation: follow with CXR
 - Wiggle:
 - If wiggle diminishes or becomes asymmetric, beware!
 - Could be obstructed or slipped ET tube or pneumothorax
 - Hemodynamic instability:
 - Stroke volume will increase with increased amplitude, decreased frequency, or increase in inspiratory time (increased Pmaw)
 - Hypotension can occur and may need fluid boluses to increase central venous pressure
 - Monitor blood gases to monitor PaCO2 and pH
HFOV

- Sedation
 - Usually heavy sedation needed to avoid patient from moving and “fighting” the vent
 - Spontaneous breathing causes unstable Pmaw
 - Paralytics may be required

- HFOV failure criteria:
 - Inability to decrease FiO2 within first 24 hours
 - Inability to improve or maintain ventilation

APRV - Airway pressure release ventilation

- Time triggered, pressure limited, and time cycled mode of ventilation
- First described in 1987 by John Downs
- Consists of a high flow continuous positive pressure around which a patient can breath spontaneously
- Regular intermittent rapid exhalations allowing outflow of gas from the lungs (tidal ventilation) without full collapse of alveoli
- Can also be used in a completely apneic patient
APRV

- Mean airway pressure drives oxygenation (Pmaw) which is determined by the high and low pressure settings (P High, P Low)
 - While Pmaw is usually higher than in conventional ventilation, PIP is much lower
- Ventilator rate: function of the set time the patient remains in the high and low pressures (T High, T Low)
 - Longer inspiratory times than expiratory times
 - Inverse ratio ventilation
 - The longer T High, the more recruitment occurs from sustained plateau pressures, and the higher the release volume becomes
 - T Low set long enough to achieve ventilation but short enough not to collapse alveoli
- Unrestricted, spontaneous breathing throughout entire cycle

When to use it?

- Specifically for use in a patient with a sustained spontaneous respiratory effort that has failed conventional ventilation from acute lung injury
- Poor compliance lungs with diminished functional residual capacity from collapsed alveoli
APRV

Advantages
- Lower Paw for given tidal volume and thus lower barotrauma
- Lower atelectrauma
- Lower minute ventilation
- Lower need for sedation (in older children)
- No need for neuromuscular blockade (in older children)
- More patient comfort with being able to take spontaneous breaths anytime
- Limited to no effect on cardio-circulatory function, unlike HFOV
- Decrease in VQ mismatch

Disadvantages:
- Volumes affected by changes in lung compliance and resistance
- Superiority to conventional modes has not been demonstrated in children
 - Evidence suggests no harm or no better than conventional modes with mortality in pediatric patients (Frawley & Habashi, 2001)
 - Only used when conventional ventilation has failed to improve oxygenation
ECMO - Extra corporeal membrane oxygenation

- Provides mechanical cardiorespiratory support in the setting of severe pulmonary and hemodynamic failure refractory to medical management
- Blood is removed from venous circulation, oxygenated, and returned to the body either through the venous or arterial circulation

ECMO

- Two types
 - Venous-Venous ECMO
 - Oxygenated blood is returned to venous circulation where it subsequently delivered to pulmonary bed
 - Appropriate for pulmonary failure only
 - Venous-Arterial ECMO
 - Blood removed from internal jugular vein, oxygenated and returned to aortic arch via right common carotid artery
 - Permits both cardio and respiratory support
ECMO

Indications:
- Respiratory:
 - Bacterial, viral, aspiration pneumonia, ARDS
 - Congenital diaphragmatic hernia
 - Refractory hypoxemia with Oxygenation Index > 40 and PaO₂/FiO₂ < 100 despite maximal medical and respiratory support
- Cardiac:
 - Congenital heart conditions
 - End stage cardiac disease as a bridge to transplant

Contraindications:
- Irreversible renal, hepatic, or respiratory failure
- Irreversible cognitive compromise
- Gestational age < 34 weeks, Birth weight < 2000 g
- Mechanical ventilation > 10 days
- Chronic lung disease or any malignancy
- Contraindication to anticoagulation
ECMO

Outcomes
- Respiratory:
 - A UK study showed 64% survive to decannulation and 56% survived to discharge
 - With longer standing programs, survival to discharge increases
 - The longer the need for ECMO the lower the survival rate, although much longer times are tolerated than in the cardiac group

Limitations
- Located only in tertiary level intensive care units
- Need a cardiothoracic or trauma surgeon in house for cannulation of patient
- Highly specialized staffing required (ECMO specialists, ECMO trained intensivists, nurses, and other pediatric subspecialists)
- Will need anticoagulation and dialysis
- Will still need to be intubated and ventilated
- Will need sedation and neuromuscular blockade

ECMO

Complications:
- Hemorrhage
 - During cannulation
 - Pulmonary hemorrhage
 - Intracranial hemorrhage
 - GI bleeding
- Thromboembolism
- Infections
- Swelling
- Renal/Hepatic dysfunction
ECMO - ventilation considerations

- ECMO still requires mechanical ventilation
- VV-ECMO
 - Ventilator associated lung injury (volutrauma, barotrauma, atelectrauma, inflammation)
 - Low volumes may still cause injury in lungs with minimally aerated alveoli
 - Volume and pressure limited strategies beyond those for conventional ARDS treatment may be required
 - Trick is to minimize atelectrauma, alveolar strain, and over distension
 - Low tidal volumes (<4 ml/kg in older children) coupled with higher PEEP (>10 mm H2O)
 - Decrease the opening and closing of alveoli caused by higher tidal volumes and rates (lower RR)
 - Try to minimize oxygen toxicity to areas that are over ventilated and under perfused
 - Cause of reabsorption atelectasis - derecruitment in the setting of pure oxygen (decrease FiO2)

ECMO - ventilator strategies

- VA-ECMO
 - Pulmonary arterial flow reduced with increased pressures
 - VQ mismatch - overventilation
 - Right and left ventricular flow affected with both VV and VA ECMO
 - Increased PEEP can cause increased pulmonary vascular resistance, decrease preload and decrease cardiac output
Questions?

References