ARDS – A Brief Overview
Lucas Pitts, M.D.
Assistant Professor of Medicine
Pulmonary and Critical Care Medicine
University of Kansas School of Medicine

Outline
• Definition of ARDS
• Epidemiology of ARDS
• Pathophysiology of ARDS
• Ventilator management strategies
 — Low tidal volume ventilation
 — Permissive hypercapnia
 — Open lung ventilation
 — Recruitment maneuvers
 — Prone ventilation
 — High frequency ventilation
• Non ventilatory and novel therapies

Introduction
• Condition first described in 1960s
 — Described by military clinicians in Vietnam as “shock lung”
 — Simultaneously described as “adult respiratory distress syndrome”
• Terminology changed when it was discovered that persons of any age could be affected
 — “acute respiratory distress syndrome”
Definitions

• Acute onset of bilateral pulmonary infiltrates consistent with pulmonary edema
 – Without evidence of elevated left atrial pressure
 • PCWP ≤ 18 mmHg
• ALI (acute lung injury) and ARDS are differentiated by degree of hypoxemia
 – ALI – P/F ratio of 201 to 300 mmHg
 – ARDS – P/F ratio of ≤ 200 mmHg

P/F Ratio

• PaO2 requires ABG analysis to determine
 – Can be difficult to obtain in some patients
• SpO2 is a reasonable substitute (Rice, 2007)
 – SpO2/FiO2 235 predicted P/F 200
 – SpO2/FiO2 315 predicted P/F 300
• ALI/ARDS is an arbitrary definition

Oxyhemoglobin Dissociation Curve
Epidemiology

• Incidence (Rubenfeld, 2012)
 – ALI
 • 86 per 100k person-years
 – ARDS
 • 64 per 100k person-years
 – Increases dramatically with patient age
 • 16/100k person-years (15-19y/o)
 • 306/100k person-years (75-84y/o)
 – Approximately 190,000 cases of ALI in the U.S each year

• 10-15% of ICU patients meet criteria for ALI or ARDS
 – 20% of those mechanically ventilated
• Incidence appears to be decreasing (Li, 2010)
 – Decline in hospital-acquired ARDS
 – Those with ARDS tend to be much sicker than they used to be

• Previously had a mortality rate greater than 50% (Ashbaugh, 1967)
• Mortality decreased to 29-38% during the 1990s
• Mortality appears to be continuing to decline, now approaching 25%
• A minority of patients with ARDS die exclusively from respiratory failure
• Most patients succumb to secondary complications or their primary illness
Pathophysiology

- ARDS is characterized by accumulation of fluid and protienaceous debris in the alveoli and interstitium of the lung.
- Normal lung function requires dry, patent alveoli to be closely approximated to perfused capillaries.

Pathophysiology

- Fluid crosses pulmonary capillary membranes under control of hydrostatic and oncotic forces.
- Serum protein remains intravascular.
- Small quantities of fluid are normally allowed into the interstitium.
- Three mechanisms normally prevent alveolar edema:
 - Retained intravascular protein
 - Interstitial lymphatic return
 - Capillary epithelial tight junctions.

Pathophysiology

- ALI/ARDS are consequences of alveolar injury leading to diffuse alveolar damage.
- Lung injury leads to release of pro-inflammatory cytokines:
 - Neutrophils are recruited to the lungs
 - Toxic mediators are released damaging capillary and alveolar endothelium.
- Protein escapes from the vascular space.
- Fluid overwhelms lymphatics and fills air spaces:
 - Alveolar collapse ensues.
Consequences of Injury

- Impairment of gas exchange
 - V/Q mismatching
 - Shunting leads to hypoxemia
 - Increased dead space impairs CO₂ elimination
- Decreased lung compliance
 - Stiffness of nonaerated lung
 - Smaller tidal volumes can lead to markedly elevated airway pressures
- Pulmonary hypertension

Three Stages of ARDS

- Exudative stage
 - Diffuse alveolar damage
- Proliferative stage
 - Resolution of pulmonary edema
 - Proliferation of type II pneumocytes
 - Squamous metaplasia
 - Interstitial infiltration
 - Collagen deposition
- Fibrotic stage
 - Obliteration of lung architecture
 - Cyst formation
 - Fibrosis

Etiologies

- Many different potential etiologies
 - More than 60 possible causes have been identified
- Sepsis
 - Most common cause of ALI/ARDS
 - Concurrent alcoholism markedly increases risk
 - 70% vs. 30%
- Aspiration
 - ALI/ARDS develops in approximately 33% of hospitalized patients with witnessed aspiration
Etiologies

• Pneumonia
 – CAP is most common cause of out-of-hospital development of ALI/ARDS
 – Nosocomial pneumonia well-recognized to progress to ALI/ARDS

• Severe trauma
 – Bilateral lung contusion
 – Fat embolism following long bone fractures
 • Delayed onset – 12 to 48 hours following trauma
 – Many patients predisposed to sepsis
 – Trauma-related ALI/ARDS carries more favorable prognosis than ALI/ARDS from other causes

Etiologies

• Massive transfusion
 – >15 units of PRBC is a risk factor for the development of ALI/ARDS
 – Selection bias?

• TRALI
 – Development within 6 hours of transfusion

• Lung and HSCT
 – Primary graft failure in lung transplant recipients
 • Poor preservation of donor organ
 – DAH, engraftment syndrome, infections in HSCT recipients

Etiologies

• Overdose and toxicity (Reed, et al.)
 – Aspirin, cocaine, opioids, phenothiazines, tricyclic antidepressants
 – Protamine, nitrofurantoin, systemic chemotherapy (at therapeutic dosages)
Initial Course

• Pulmonary abnormalities develop within 48 to 72 hours following the inciting event
 — Rapid worsening of clinical status common
• ABG generally indicates respiratory alkalosis, hypoxemia
 — Hypoxemia due to physiologic shunting

ARDS Initial CXR

Subsequent Course

• Following the initial acute phase of disease, patients may take one of two courses:
 — Improvement in ventilatory requirements accompanied by radiographic improvement
 — Entrance into the organizing/fibrotic phase of ARDS with persistent ventilator dependence and radiographic abnormality
Complications

- ALI/ARDS is associated with many complications generally seen in states of critical illness
- Complications specific to ALI/ARDS
 - Barotrauma
 - Sedation/paralysis

Barotrauma

- A result of pulmonary parenchymal tissue breakdown and a generally uniform need for positive pressure ventilation
- Incidence appears to be 13% among patients using low-tidal volume ventilation strategies
- Highest levels of barotrauma found among patients receiving high PEEP
 - Mean airway pressure, plateau pressure, and driving pressure did not predict barotrauma

Consequences of Sedation and Paralysis

- Prolonged depression of mental status
- Persistent neuromuscular weakness
 - Critical illness myopathy
 - Most prominent when neuromuscular blocking agents are used in conjunction with corticosteroids

Ventilatory Strategies

• Low Tidal Volume Ventilation
• Permissive hypercapnia
• Open-lung ventilation
• Recruitment maneuvers
• Prone ventilation
• High frequency ventilation

Low Tidal Volume Ventilation

Randomized 861 patients with ALI/ARDS to traditional ventilation versus lower tidal volume ventilation
- Traditional ventilation: initial V_t 12 mL/kg; plateau pressure ≤ 50 cm H$_2$O
- Lower tidal volume ventilation: initial V_t, 6 mL/kg; plateau pressure ≤ 30 cm H$_2$O

• Study aborted because mortality was significantly lower in the lower-tidal volume group (31.0% vs. 39.8%)
• Number of days without ventilator increased in lower-tidal volume group (12 vs. 10)
Low Tidal Volume Ventilation

- Preponderance of quality evidence has shown LTVV improves mortality and other outcomes in ARDS
- Reduction in mortality and increases in ventilator-free days

Potential Harm of LTVV

- Was not associated with any clinically important adverse outcomes in the ARMA trial
- Auto-PEEP
 - Higher respiratory rates are required for LTVV to maintain the same minute ventilation
 - May lead to hemodynamic instability
- Sedation
 - WOB and ventilator asynchrony may increase with LTVV
 - Initial need for increased sedation when ventilation initiated, but does not appear to persist
 - Post-hoc analysis of ARMA trial did not find any differences in sedation duration among patient groups

Breath Stacking

- Can occur despite sedation
- Causes episodic delivery of higher Vt which may undermine benefits of LTVV
- Can be ameliorated by delivering slightly higher Vt
 - Pplat should remain ≤ 30 cm H2O
Breath Stacking

Application of LTVV

- A threshold P_{plat} below which safety is certain is not known
 - Goal of ≤ 30 is derived from ARMA trial
 - Plateau pressure should be kept as low as possible
- Oxygenation goal
 - PaO_2 between 55-80 mmHg
 - SpO_2 between 88-95%
Permissive Hypercapnia

- The understanding that protective lung ventilation strategies will occasionally limit alveolar ventilation
- Low tidal volume ventilation will sometimes lead to hypercapnia, which has been shown to be generally well tolerated in trials
- Safe for most patients
- Some patients exist in whom permissive hypercapnia may be harmful

Contraindications to Permissive Hypercapnia

- Cerebral disease
 - Mass lesions, trauma, cerebral edema
 - Seizure disorder
- Hypercapnia is associated with cerebral vasodilatation
 - Increases cerebral blood flow
 - May cause increased ICP and potentially reduce CPP
- May lower seizure threshold
- Associated with intraventricular hemorrhage in neonates

Hypercapnia may be Harmful...

- Patients with significant heart disease
 - Increased sympathetic tone
- Patients taking beta blockers
 - Negative inotropic effects
- Hypovolemia
 - Systemic vasodilatation
 - Leads to hypotension
Open Lung Ventilation

- Combines low tidal volume ventilation with higher PEEP
 - Maximizes alveolar recruitment
- Low tidal volume ventilation mitigates alveolar overdistention
- Elevated PEEP seeks to minimize cyclic atelectasis

Open Lung Ventilation

- Has been shown to provide survival benefit in two trials
 - Trials have severe methodologic limitations
 - Unclear if survival benefits translate into real practice at this point
- May require permissive hypercapnia
Amato, et al.

- 53 patients randomized
 - Conventional ventilation
 - Lowest possible PEEP with V_t 12 mL/kg
 - Protective ventilation
 - PEEP above the lower inflection point on a static pressure-volume curve
 - V_t of <6 mL/kg
 - Driving pressure <20 cm above PEEP value
 - Preferential use of pressure-limited ventilatory modes

Amato, et al.

- Protective strategy improved survival at 28 days
- Higher rate of weaning from mechanical ventilation
- Lower rate of barotrauma among patients with ARDS
- Not associated with a higher rate of survival to hospital discharge

Application of Open Lung Ventilation

- No universally accepted protocol
- Applied PEEP is set at least 2 cm above the lower inflection point of the pressure-volume curve
 - 16 cm PEEP is generally used if the lower inflection point is uncertain
High PEEP Ventilation

- Type of open lung ventilation that does not require a pressure-volume curve
 - Less need for neuromuscular blockade
- Applied PEEP should open collapsed alveoli
 - Decreases alveolar overdistention
 - Each breath is more evenly spread over the lung
 - Cyclic atelectasis is reduced

Briel, et al.

- Meta-analysis of 2299 patients in 3 trials
- All patients received LTVV
- Treatment with higher vs lower levels of PEEP was not associated with improved hospital survival among all comers
- Among the subgroup of patients with ARDS, higher levels of PEEP were associated with improved survival
Recruitment Maneuvers

• Brief application of high level of CPAP (35-40cmH2O) for 40 seconds
• Clinical impact is uncertain
 – Meta-analysis found recruitment maneuvers do not affect mortality, LOS, barotrauma
 – Improve oxygenation
• Complications can include hypotension and transient desaturation

Prone Ventilation

• Mechanical ventilation taking place with the patient lying the prone position
• Improves oxygenation in many patients with ARDS
• Uncertain clinical benefits

Physiologic Effects

• Optimization of V/Q matching
• How prone positioning may improve ventilation:
 – Improves differences between dorsal and ventral pleural pressures
 • More homogenous lung recruitment
 – Unloads the weight of the heart which normally compresses lung beneath it in the supine position
 – Displaces diaphragm, decreasing posterior-caudal compression of the lung
Physiologic Effects

• How prone ventilation may improve perfusion:
 – V/Q matching is improved when prone as blood flow is relocated to ventilated portions of lung
 – More aerated lung is perfused as a percentage of total overall blood flow through the lung
 – Shunting is minimized
• No evidence to suggest real clinical benefit

Clinical Outcomes of Prone Ventilation

• Increases arterial PaO2 in most patients with ARDS (uncontrolled trials)
• Predictors of sustained response
 – Improved oxygenation during a brief trial
 – Diffuse pulmonary edema and dependent atelectasis
 – Extrapulmonary causes of ARDS
 – Elevated intra-abdominal pressure

Mortality Benefit of Prone Ventilation

• Prone ventilation does not confer a mortality benefit (randomized trials/meta-analyses)
• Exception may be made for those patients with the greatest severity of illness
 – Two trials demonstrated mortality benefits among severely hypoxemic patients
 • P/F ratio < 100
 • Meta-analysis demonstrated 53% vs 63% mortality reduction among 555 patients

In the End...

- Prone ventilation is warranted in select patients (most critically ill)
- Prone ventilation should not be used as routine management in all patients with ARDS
- Duration of effective prone ventilation is unknown
- No good data to justify its use
- Best reserved as a rescue therapy

High-Frequency Ventilation

- Provides tidal volumes below that of anatomic dead space at frequencies of greater than 60 breaths/minute
- May decrease VILI and reduce barotrauma in patients with ARDS
- May improve V/Q matching and reduce risk of hemodynamic compromise

Potential Complications of HFV

- Desiccation of mucus
- Airway damage due to high gas velocities
- Air trapping
- High shear forces
 - Between areas of lung with different impedances
HFV in Practice

- Poor data to support routine use in patients with ALI/ARDS
- May improve oxygenation compared to conventional ventilation, but benefits are not sustained over time
- Should be reserved as salvage therapy for patients failing conventional ventilation
- Significant expertise and resources are necessary to safely and effectively perform HFV

Types of HFV

- High frequency jet ventilation (HFJV)
- High frequency oscillatory ventilation (HFOV)
- High frequency percussive ventilation (HFPV)
- High frequency positive pressure ventilation (HFPPV)

Novel Therapies

- Surfactant
 - No evidence to support routine use
 - More study is needed in formulation and delivery systems
- Inhaled vasodilators (NO, prostacyclin)
 - Have not been shown to reduce morbidity or mortality in patients with ARDS
- Liquid ventilation
 - May cause undue harm in ARDS patients
 - Cannot be recommended for use in ARDS at this time
- ECMO
 - Poor base of evidence to support use
 - Resource intensive
- Antiinflammatory agents
In Conclusion

- ARDS is reasonably common, but the incidence is declining
- Complications related to ARDS are generally related to concurrent critical illness, although barotrauma is common a significant iatrogenic complication
- Low tidal volume ventilation has been consistently shown to improve morbidity and mortality in ARDS
- The use of high levels of PEEP is probably beneficial
- Other ventilatory strategies are best used as salvage therapy for severely hypoxemic individuals
- A number of novel nonventilatory therapies are being studied in ARDS but are not yet proven to provide benefit