Life in the Trauma Room: An Introduction to Thoracic Injury

James Haan MD
Via Christi - St Francis
KU-Wichita

Sections

- Introduction to ThoracoAbdominal Injury
- Anatomy and Physiology of the Thorax & Abdomen
- Pathophysiology of Torso Trauma / Mechanism of Injury
- Assessment of the Torso Trauma Patient
- Management of the Torso Injury Patient

Thoracic Trauma

- Second leading cause of trauma deaths
- 85% treated with general resuscitation measures
- 15% require thoracotomy
Introduction to Thoracic Injury

- Vital Structures
 - Heart, Great Vessels, Esophagus, Tracheobronchial Tree, & Lungs
- 25% of MVC deaths are due to thoracic trauma
 - 12,000 annually in US
- Abdominal & Head injuries are common with chest trauma.

- Prevention Focus
 - Legislation
 - Improved motor vehicle restraint systems
 - Passive Restraint Systems
 - Airbags

Anatomy and Physiology of the Thorax

- Trachea, Bronchi & Lungs
 - Pleura
 - Visceral Pleura
 - Cover lungs
 - Parietal Pleura
 - Lining inside of thoracic cavity
 - Pleural Space
 - POTENTIAL SPACE
 - Air in Space = PNEUMOTHORAX
 - Blood in Space = HEMOTHORAX
 - Serous (pleural) fluid within
 - Lubricates & permits ease of expansion

- Trachea
 - Hollow & cartilage supported structure

- Bronchi
 - Right & left extend for 3 centimeters
 - Enters lungs at Pulmonary Hilum
 - Also where pulmonary arteries & veins enter
 - Further subdivide and terminate as alveoli
 - Basic unit of structure & function in the lungs
 - Single cell membrane
 - External versus Internal Respiration

- Lungs
 - Right = 3 lobes
 - Left = 2 lobes
• **Diaphragm**
 - Muscular, dome-like structure
 - Separates abdomen from the thoracic cavity
 - Affixed to the lower border of the rib cage
 - Central and superior margin extends to the level of the 4th rib anteriorly and 6th rib posteriorly
 - Major muscle of respiration
 • Draws downward during inspiration
 • Moves upward during exhalation

• **Thoracic Skeleton**
 - Topographical Thoracic Reference Lines
 • Mid-clavicular line
 • Anterior axillary line
 • Mid-axillary line
 • Posterior axillary line
 - Intercostal space
 • Artery, Vein and Nerve on inferior margin of each rib
 - Thoracic Inlet
 • Superior opening of the thorax
 • Curvature of 1st rib with associated structures
 - Thoracic Outlet
 • Inferior opening of the thorax
 • 12th rib and associated structures & Xiphisternal joint

• **Associated Musculature**
 - Shoulder girdle
 - Muscles of respiration
 • **Diaphragm**
 - Primary muscle of respiration
 - Inhalation: Contracts downward
 - Exhalation: Relaxes upward
 • Intercostal muscles
 - Contract to elevate the ribs and increase thoracic diameter
 - Increase depth of respiration
 • Sternocleidomastoid
 - Raise upper rib and sternum
Blunt Injuries

- MVC
- MCC
- Falls
- Assaults
- Contact Sports
- Pedestrian Struck
- Industrial
- Farm Mishaps

Pathophysiology of Thoracic Trauma

- Blunt Trauma
 - Results from kinetic energy forces
 - Subdivision Mechanisms
 - Blast
 - Pressure wave causes tissue disruption
 - Tear blood vessels & disrupt alveolar tissue
 - Disruption of tracheobronchial tree
 - Traumatic diaphragm rupture

(continued)

- Crush (Compression)
 - Body is compressed between an object and a hard surface
 - Direct injury of chest wall and internal structures

- Deceleration
 - Body in motion strikes a fixed object
 - Blunt trauma to chest wall
 - Internal structures continue in motion

- Age Factors
 - Pediatric Thorax: More cartilage = Absorbs forces
 - Geriatric Thorax: Calcification & osteoporosis = More fractures
Pathophysiology of Thoracic Trauma

Cardiovascular Injuries

• Traumatic Aortic Rupture
 – Aorta most commonly injured in severe blunt trauma
 – 55-65% mortality
 – Typically patients 50% will survive the initial injury insult
 • 30% mortality in 6 hrs
 • 50% mortality in 24 hrs
 • 70% mortality in 1 week
 – Injury may be confined to areas of aorta attachment
 – Signs & Symptoms
 • Rapid and deterioration of vitals
 • Pulse deficit between right and left upper or lower extremities
 • May be hemodynamically stable

Pathophysiology of Thoracic Trauma

• Penetrating Trauma
 – Low Energy
 • Arrows, knives, handguns
 • Injury caused by direct contact and cavitation
 – High Energy
 • Military, hunting rifles & high powered hand guns
 • Extensive injury due to higher kinetic energy
 – Shotgun
 • Injury severity based upon the distance between the victim and shotgun & caliber of shot
 • Type I: >7 meters from the weapon
 – Soft tissue injury
 • Type II: 3-7 meters from weapon
 – Penetration into deep fascia and some internal organs
 • Type III: <3 meters from weapon
 – Massive tissue destruction

Penetrating Injuries

• GSW
• Stab
• Impalements
Injuries Associated with Penetrating Thoraco Abdominal Trauma

- Closed pneumothorax
- Open pneumothorax (including sucking chest wound)
- Tension pneumothorax
- Pneumomediastinum
- Hemothorax
- Hemopneumothorax
- Laceration of vascular structures

Tracheobronchial tree lacerations
Esophageal lacerations
Penetrating cardiac injuries
Pericardial tamponade
Spinal cord injuries
Diaphragm trauma
Intra-abdominal penetration with associated organ injury

Airway Injuries

- Protect Airway
- Primary repair if able
 - Buttress
 - Segmental Resection
- Vent Strategy
 - Early extubation
 - Minimize Peak Pressures

Airway: Resuscitative Procedure

- DAI/RSI
 - Maintain C-spine immobilization
 - ETT size
 - Cricoid pressure (Sellick Maneuver)
 - Occlude esophagus to prevent aspiration

Sellick’s Maneuver, applying cricoid pressure
Thyroid cartilage
Cricoid cartilage
Trachea

Cervical Vertebrae
Airway: Resuscitative Procedures - Optional

• Combitube
 – Not for use in children

• Cricothyroidotomy
 – Not recommended for child < 12 yr. Old

Airway: Resuscitative Procedures

• DAI/RSI
 – Pre-oxygenate with 100% Oxygen
 – DAI Medications
 • Succinylcholine
 • IV sedation
 • Etomidate
 – Visualize vocal cords

Airway: Resuscitative Procedures

• Reassessment of airway
 – End tidal CO2 if tracheal intubation
 – Auscultation:
 Chest/Abdomen
 – Chest wall rise
 – Pulse oximeter
 – Vital signs
Airway Injury

Exposure

Tracheal Repair
GSW

Bronchoscopy

Retrieval
Thoracic Penetrating Injuries

- Rib Fractures
 - >50% of significant chest trauma cases due to blunt trauma
 - Compressional forces flex and fracture ribs at weakest point - Lateral
 - Ribs 1-3 require great force to fracture
 - Possible underlying lung injury
 - Ribs 4-9 are most commonly fractured
 - Ribs 9-12 less likely to be fractured
 - Transmit energy of trauma to internal organs
 - Hypoventilation is COMMON due to PAIN

Pathophysiology of Thoracic Trauma

Chest Wall Injuries
Pathophysiology of Thoracic Trauma

Chest Wall Injuries

- Flail Chest
 - Segment of the chest that becomes free to move with the pressure changes of respiration
 - Three or more adjacent rib fracture in two or more places
 - Serious chest wall injury with underlying pulmonary injury—Especially Contusions
 - Reduces volume of respiration—pneumonia
 - Adds to increased mortality
 - Paradoxical flail segment movement
 - Positive pressure ventilation can restore tidal volume
 - Pain control critical
Pathophysiology of Thoracic Trauma

Pulmonary Injuries

- **Open Pneumothorax**
 - Free passage of air between atmosphere and pleural space
 - Air replaces lung tissue
 - Mediastinum shifts to uninjured side
 - Air will be drawn through wound if wound is 2/3 diameter of the trachea or larger

- **Signs & Symptoms**
 - Penetrating chest trauma
 - Sucking chest wound
 - Frothy blood at wound site
 - Severe Dyspnea
 - Hypovolemia

- **Tension Pneumothorax** - Life Threatening
 - Buildup of air under pressure in the thorax
 - Excessive pressure reduces effectiveness of respiration
 - Air is unable to escape from inside the pleural space
 - Progression of Simple or Open Pneumothorax
 - Decreased venous return
Pathophysiology of Thoracic Trauma

Pulmonary Injuries

- **Dyspnea**
 - Tachypnea at first
 - Progressive ventilation/perfusion mismatch
 - Atelectasis on uninjured side
- **Hypoxemia**
- **Hyperinflation of injured side of chest**
- **Hyperresonance of injured side of chest**

Tension Pneumothorax Signs & Symptoms

- Diminished then absent breath sounds on injured side
- Cyanosis
- Diaphoresis
- AMS
- JVD
- Hypotension
- Hypovolemia
- Tracheal Shifting

LATE SIGN

- Diminished then absent breath sounds on injured side
- Cyanosis
- Diaphoresis
- AMS
- JVD
- Hypotension
- Hypovolemia
- Tracheal Shifting

Hemothorax Signs & Symptoms

- **Hemothorax**
 - Accumulation of blood in the pleural space
 - Serious hemorrhage may accumulate 1,500 mL of blood - Indication for Thoracotomy
 - Mortality rate of 75%
 - Each side of thorax may hold up to 3,000 mL
 - Blood loss in thorax causes a decrease in tidal volume
 - Typically accompanies pneumothorax
 - Hemopneumothorax

- **Blunt or penetrating chest trauma**
- **Shock**
 - Dyspnea
 - Tachycardia
 - Tachypnea
 - Diaphoresis
 - Hypotension
- **Dull to percussion over injured side**
Pulmonary Contusion
- Soft tissue contusion of the lung
- 30-75% of patients with significant blunt chest trauma
- Frequently associated with rib fracture
- Typical MOI
 - Deceleration
 - Chest impact on steering wheel
 - Bullet Cavitation
 - High velocity ammunition
- Microhemorrhage may account for 1-1 ½ L of blood loss in alveolar tissue
- Progressive deterioration of ventilatory status
- Hemoptysis - Not Typical

Pathophysiology of Thoracic Trauma

Chest Wall Injuries
- Contusion
 - Most Common result of blunt injury
 - Signs & Symptoms (often none)
 - Erythema
 - Ecchymosis
 - DYSPEA
 - PAIN on breathing
 - Limited breath sounds
 - HYPOVENTILATION
 - BIGGEST CONCERN - "HURTS TO BREATHE"
Pulmonary Contusion

- 70% of patients demonstrate changes 1-hour post injury
- Other patients have a 4-6 hour time lag
- Initial x-ray findings have NO correlation with severity of contusion even CCT limited due to progression
• Pericardial Tamponade
 – Restriction to cardiac filling caused by blood or other fluid within the pericardium
 – Occurs in ~2% of all serious chest trauma
 • However, very high mortality
 – Results from tear in the coronary artery or penetration of myocardium
 • Blood seeps into pericardium and is unable to escape
 • 200-300 ml of blood can restrict effectiveness of cardiac contractions
 – Removing as little as 20 ml can provide relief

Pathophysiology of Thoracic Trauma
Cardiovascular Injuries

Pericardial Tamponade Signs & Symptoms

- Kussmaul’s sign
 Decrease or absence of JVD during inspiration
- Pulsus Paradoxus
 Drop in SBP >10 during inspiration
 Due to increase in CO2 during inspiration

Electrical Alterans
P, QRS, & T amplitude changes in every other cardiac cycle

PEA
Pathophysiology of Thoracic Trauma

Other Thoracic Injuries

- Traumatic Asphyxia
 - Results from severe compressive forces applied to the thorax
 - Causes backwards flow of blood from right side of heart into superior vena cava and the upper extremities
- Signs & Symptoms
 - Head & Neck become engorged with blood
 - Skin becomes deep red, purple, or blue
 - NOT RESPIRATORY RELATED
 - JVD
 - Hypotension, Hypoxemia, Shock
 - Face and tongue swollen
 - Bulging eyes with conjunctival hemorrhage

Pathophysiology of Thoracic Trauma

Other Thoracic Injuries
Assessment of the Thoraco Abdominal Trauma Patient

- Scene Size-up
- Initial Assessment
- Rapid Trauma Assessment
 - Observe
 - JVD, SQ Emphysema, Expansion of chest
 - Question
 - Palpate
 - Auscultate
 - Percuss
 - Blunt Trauma Assessment
 - Penetrating Trauma Assessment
- Ongoing Assessment

PT. ASSESSMENT

- Difficult to assess pain (ABD vs. Ribs)
- Pain may be masked by drugs, head injury, ETOH
- Observation
 - Distention
 - Contusions
 - Cullen's sign – ecchymosis around umbilicus = splenic injury
 - Grey Turner's sign – Flank ecchymosis
 - Kehr's sign – referred pain to shoulders from ABD Injury, worse when lying flat = diaphragm and phrenic nerve

PT. ASSESSMENT (CON’D)

- Observation (con’d)
 - Penetration
 - Evisceration
 - Impaled object
 - Obvious bleeding
 - Scaphoid abdomen – Sign of herniated diaphragm
 - Encapsulating Injury – bleeding into itself without rupturing (Ex. Spleen or Liver)
Management of the Chest Injury Patient

General Management

- Ensure ABCDE’s
 - High flow O₂ via NRB
 - Intubate if indicated
 - Consider RSI
 - No role noninvasive ventilation
 - CXR/FAST exam
- Tension PTX is a CLINICAL diagnosis and can be delayed
- Shock Management
 - Fluid Bolus: 2 liters or 20 mL/kg
 - Constant Reevaluation

Management of the Chest Injury Patient

Rib Fractures

- Consider analgesics for pain and to improve chest excursion
 - Epidural
 - Rib blocks
 - Continuous infusion
- Indications for rib fixation

Management of the Chest Injury Patient

Flail Chest

- Place patient on side of injury
 - ONLY if spinal injury is NOT suspected
- Expose injury site
- Pain control
- High flow O₂:
 - Consider PPV or ET if decreasing respiratory status
 - Myth “internal stenting/stabilization”
- DO NOT USE SANDBAGS/DRESSINGS TO STABILIZE FX
Management of the Chest Injury Patient

• Open Pneumothorax
 – High flow O₂
 – Cover site with sterile occlusive dressing taped on three sides
 – Progressive airway management if indicated

• Tension Pneumothorax
 – Confirmation
 • Auscultation & Percussion
 – Pleural Decompression
 • 2nd intercostal space in mid-clavicular line TOP OF RIB
 • Consider multiple decompression sites if patient remains symptomatic
 • Create one-way valve
 • CT placement
Breathing: Resuscitative Procedures I

• Needle Decompression
 – Second Intercostal Space
 – Mid-clavicular line
 – Catheter over needle may be used

Breathing: Resuscitative Procedures I

• Chest Tube Insertion

• Fifth intercostal space anterior to mid-axillary line at infra-mammary crease

Management of the Chest Injury Patient

• Hemothorax
 – High flow O₂
 – CT placement OR for
 – 1500 cc or 300 hr x 2 hours

 – 2 large bore IV’s
 • Maintain SBP of 90-100 or MAP 55-60
 • EVALUATE BREATH SOUNDS
Management of the Chest Injury Patient

- Pulmonary contusion
- Injured lung poorly compliant
- MAP = oxygenation
 - PC inverse ratio
 - APRV
 - Bilevel
 - High frequency ventilation
- Proning?
- ECLA

Prone Ventilation

- Usually used late in the course of ARDS
- Decreased dependent atelectasis
 - Weight of the heart is removed
 - Lower weight of lung pressing down on the dependent prone lung
 - Prone positioning may shift the diaphragm down, decreasing the compressive effect of abdominal contents

Prone Ventilation

- Benefits Continued
 - Change from supine to prone with the same level of PEEP may keep the now dependent portions open while allowing the non-dependent portions to re-expand (prevents derecruitment)
 - Change in position does not completely change blood flow to the lung (good lung on the bottom may continue to receive increased flow)
Prone Ventilation

- Hemodynamic instability (1.1% per prone cycle)
- Extubation (0.4%)
- Decreased O2 sat (0.3%)
- Apical atelectasis (0.3%)
- Kinked ETT (0.1%)
- Obstructed CT (0.1%)
- Dislodged central lines (0.2%)
- Supraventricular tachycardia (0.1%)
- Possible aspiration (tube feeding rate must be decreased)

Management of the Chest Injury Patient

- Traumatic Asphyxia
 - Support airway
 - Provide O2
 - PPV with BVM to assure adequate ventilation
 - 2 large bore IV'S
 - Evaluate and treat for concomitant injuries
 - If entrapment > 20 min with chest compression
 - Consider 1mEq/kg of Sodium Bicarbonate

Conclusions

- Early Diagnosis and Interventions
- Judicious use of Fluids
- Appropriate pain control
- MAP based Ventilator Strategy
- Early mobilization and physiotherapy